Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Chest ; 162(5): 982-994, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: covidwho-1914240

RESUMEN

BACKGROUND: Convalescent plasma has been one of the most common treatments for COVID-19, but most clinical trial data to date have not supported its efficacy. RESEARCH QUESTION: Is rigorously selected COVID-19 convalescent plasma with neutralizing anti-SARS-CoV-2 antibodies an efficacious treatment for adults hospitalized with COVID-19? STUDY DESIGN AND METHODS: This was a multicenter, blinded, placebo-controlled randomized clinical trial among adults hospitalized with SARS-CoV-2 infection and acute respiratory symptoms for < 14 days. Enrolled patients were randomly assigned to receive one unit of COVID-19 convalescent plasma (n = 487) or placebo (n = 473). The primary outcome was clinical status (disease severity) 14 days following study infusion measured with a seven-category ordinal scale ranging from discharged from the hospital with resumption of normal activities (lowest score) to death (highest score). The primary outcome was analyzed with a multivariable ordinal regression model, with an adjusted odds ratio (aOR) < 1.0 indicating more favorable outcomes with convalescent plasma than with placebo. In secondary analyses, trial participants were stratified according to the presence of endogenous anti-SARS-CoV-2 antibodies ("serostatus") at randomization. The trial included 13 secondary efficacy outcomes, including 28-day mortality. RESULTS: Among 974 randomized patients, 960 were included in the primary analysis. Clinical status on the ordinal outcome scale at 14 days did not differ between the convalescent plasma and placebo groups in the overall population (aOR, 1.04; one-seventh support interval [1/7 SI], 0.82-1.33), in patients without endogenous antibodies (aOR, 1.15; 1/7 SI, 0.74-1.80), or in patients with endogenous antibodies (aOR, 0.96; 1/7 SI, 0.72-1.30). None of the 13 secondary efficacy outcomes were different between groups. At 28 days, 89 of 482 (18.5%) patients in the convalescent plasma group and 80 of 465 (17.2%) patients in the placebo group had died (aOR, 1.04; 1/7 SI, 0.69-1.58). INTERPRETATION: Among adults hospitalized with COVID-19, including those seronegative for anti-SARS-CoV-2 antibodies, treatment with convalescent plasma did not improve clinical outcomes. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov; No.: NCT04362176; URL: www. CLINICALTRIALS: gov.


Asunto(s)
COVID-19 , Adulto , Humanos , COVID-19/terapia , SARS-CoV-2 , Anticuerpos Antivirales , Hospitalización , Resultado del Tratamiento , Sueroterapia para COVID-19
2.
Open Forum Infect Dis ; 9(5): ofac104, 2022 May.
Artículo en Inglés | MEDLINE | ID: covidwho-1831305

RESUMEN

Background: Few therapies are approved for hospitalized patients with severe coronavirus disease 2019 (COVID-19). Ibrutinib, a once-daily Bruton tyrosine kinase inhibitor, may mitigate COVID-19-induced lung damage by reducing inflammatory cytokines. The multicenter, randomized, double-blind phase 2 iNSPIRE study evaluated ibrutinib for prevention of respiratory failure in hospitalized patients with severe COVID-19. Methods: Adult patients with severe COVID-19 requiring hospitalization and supplemental oxygen but without respiratory failure were randomized 1:1 (stratified by remdesivir prescription) to ibrutinib 420 mg or placebo once daily for up to 28 days plus standard of care (SOC), including remdesivir and/or dexamethasone. Results: Forty-six patients were randomized to ibrutinib plus SOC (n = 22) or placebo plus SOC (n = 24). The primary endpoint (proportion of patients alive and without respiratory failure through day 28) was not met, with no statistically significant difference adjusting for remdesivir prescription (86% with ibrutinib plus SOC vs 79% with placebo plus SOC; adjusted difference, 5.8% [80% confidence interval, -9.2% to 20.4%]; P = .599). Secondary endpoints also showed no statistically significant improvement with ibrutinib plus SOC. Median treatment duration was 14 days for ibrutinib and placebo. Adverse events were similar with ibrutinib plus SOC vs placebo plus SOC (overall: 55% vs 50%; serious: 18% vs 13%) and were consistent with the known safety profile of ibrutinib. Conclusions: Addition of ibrutinib to SOC did not improve the proportion of patients alive and without respiratory failure through day 28 in hospitalized patients with severe COVID-19. Ibrutinib had a manageable safety profile, with similar safety to placebo. Clinical Trials Registration: NCT04375397.

3.
Trials ; 22(1): 221, 2021 Mar 20.
Artículo en Inglés | MEDLINE | ID: covidwho-1143248

RESUMEN

BACKGROUND: Convalescent plasma is being used widely as a treatment for coronavirus disease 2019 (COVID-19). However, the clinical efficacy of COVID-19 convalescent plasma is unclear. METHODS: The Passive Immunity Trial for Our Nation (PassITON) is a multicenter, placebo-controlled, blinded, randomized clinical trial being conducted in the USA to provide high-quality evidence on the efficacy of COVID-19 convalescent plasma as a treatment for adults hospitalized with symptomatic disease. Adults hospitalized with COVID-19 with respiratory symptoms for less than 14 days are eligible. Enrolled patients are randomized in a 1:1 ratio to 1 unit (200-399 mL) of COVID-19 convalescent plasma that has demonstrated neutralizing function using a SARS-CoV-2 chimeric virus neutralization assay. Study treatments are administered in a blinded fashion and patients are followed for 28 days. The primary outcome is clinical status 14 days after study treatment as measured on a 7-category ordinal scale assessing mortality, respiratory support, and return to normal activities of daily living. Key secondary outcomes include mortality and oxygen-free days. The trial is projected to enroll 1000 patients and is designed to detect an odds ratio ≤ 0.73 for the primary outcome. DISCUSSION: This trial will provide the most robust data available to date on the efficacy of COVID-19 convalescent plasma for the treatment of adults hospitalized with acute moderate to severe COVID-19. These data will be useful to guide the treatment of COVID-19 patients in the current pandemic and for informing decisions about whether developing a standardized infrastructure for collecting and disseminating convalescent plasma to prepare for future viral pandemics is indicated. TRIAL REGISTRATION: ClinicalTrials.gov NCT04362176 . Registered on 24 April 2020.


Asunto(s)
COVID-19/terapia , Hospitalización , SARS-CoV-2/patogenicidad , COVID-19/diagnóstico , COVID-19/inmunología , COVID-19/virología , Interacciones Huésped-Patógeno , Humanos , Inmunización Pasiva , Estudios Multicéntricos como Asunto , Ensayos Clínicos Controlados Aleatorios como Asunto , SARS-CoV-2/inmunología , Factores de Tiempo , Resultado del Tratamiento , Estados Unidos , Sueroterapia para COVID-19
4.
Lancet Rheumatol ; 2(12): e754-e763, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-1003184

RESUMEN

BACKGROUND: A subset of patients with COVID-19 develops a hyperinflammatory syndrome that has similarities with other hyperinflammatory disorders. However, clinical criteria specifically to define COVID-19-associated hyperinflammatory syndrome (cHIS) have not been established. We aimed to develop and validate diagnostic criteria for cHIS in a cohort of inpatients with COVID-19. METHODS: We searched for clinical research articles published between Jan 1, 1990, and Aug 20, 2020, on features and diagnostic criteria for secondary haemophagocytic lymphohistiocytosis, macrophage activation syndrome, macrophage activation-like syndrome of sepsis, cytokine release syndrome, and COVID-19. We compared published clinical data for COVID-19 with clinical features of other hyperinflammatory or cytokine storm syndromes. Based on a framework of conserved clinical characteristics, we developed a six-criterion additive scale for cHIS: fever, macrophage activation (hyperferritinaemia), haematological dysfunction (neutrophil to lymphocyte ratio), hepatic injury (lactate dehydrogenase or asparate aminotransferase), coagulopathy (D-dimer), and cytokinaemia (C-reactive protein, interleukin-6, or triglycerides). We then validated the association of the cHIS scale with in-hospital mortality and need for mechanical ventilation in consecutive patients in the Intermountain Prospective Observational COVID-19 (IPOC) registry who were admitted to hospital with PCR-confirmed COVID-19. We used a multistate model to estimate the temporal implications of cHIS. FINDINGS: We included 299 patients admitted to hospital with COVID-19 between March 13 and May 5, 2020, in analyses. Unadjusted discrimination of the maximum daily cHIS score was 0·81 (95% CI 0·74-0·88) for in-hospital mortality and 0·92 (0·88-0·96) for mechanical ventilation; these results remained significant in multivariable analysis (odds ratio 1·6 [95% CI 1·2-2·1], p=0·0020, for mortality and 4·3 [3·0-6·0], p<0·0001, for mechanical ventilation). 161 (54%) of 299 patients met two or more cHIS criteria during their hospital admission; these patients had higher risk of mortality than patients with a score of less than 2 (24 [15%] of 138 vs one [1%] of 161) and for mechanical ventilation (73 [45%] vs three [2%]). In the multistate model, using daily cHIS score as a time-dependent variable, the cHIS hazard ratio for worsening from low to moderate oxygen requirement was 1·4 (95% CI 1·2-1·6), from moderate oxygen to high-flow oxygen 2·2 (1·1-4·4), and to mechanical ventilation 4·0 (1·9-8·2). INTERPRETATION: We proposed and validated criteria for hyperinflammation in COVID-19. This hyperinflammatory state, cHIS, is commonly associated with progression to mechanical ventilation and death. External validation is needed. The cHIS scale might be helpful in defining target populations for trials and immunomodulatory therapies. FUNDING: Intermountain Research and Medical Foundation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA